Korean STI Strategy for Industrial Development and Policy Implications for Chile

Presented at

Korean Innovation Policy Week
Santiago, Chile

October 9, 2015

Yongsuk Jang, Ph.D.
Senior Research Fellow
jang@stei.re.kr
Korean STI Strategy for Industrial Development
Diagnosis on Chilean Innovation System
Policy Implications for Chile
• Korean STI Strategy for Industrial Development
• Diagnosis on Chilean Innovation System
• Policy Implications for Chile
Republic of Korea (South)

A Small Land with Scarce Resource
Korea's Economic Development, 1953-2013

2nd Poorest Country in 1945

8th Largest Economy in 2014

Source: The Bank of Korea

- 1953-1970: Per Capita GNP (current US$, 1975 base year)
- 1971-2010: Per Capita GNI (current US$, 2005 base year)
Korean Economic Growth in Comparison

Korean Experience: From Poverty to Prosperity

* Korea emerging from one of the poorest agrarian economies into an industrialized country, mainly through an outward-oriented industrialization.

GDP per capita (Current price, US $) by country

1962

<table>
<thead>
<tr>
<th>Country</th>
<th>GDP per Capita</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sri Lanka</td>
<td>140</td>
</tr>
<tr>
<td>Philippines</td>
<td>157</td>
</tr>
<tr>
<td>Mexico</td>
<td>369</td>
</tr>
<tr>
<td>Korea</td>
<td>104</td>
</tr>
<tr>
<td>India</td>
<td>92</td>
</tr>
<tr>
<td>China</td>
<td>70</td>
</tr>
</tbody>
</table>

2013

<table>
<thead>
<tr>
<th>Country</th>
<th>GDP per Capita</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sri Lanka</td>
<td>3,280</td>
</tr>
<tr>
<td>Philippines</td>
<td>2,765</td>
</tr>
<tr>
<td>Mexico</td>
<td>10,307</td>
</tr>
<tr>
<td>Korea</td>
<td>25,977</td>
</tr>
<tr>
<td>India</td>
<td>1,499</td>
</tr>
<tr>
<td>China</td>
<td>6,807</td>
</tr>
</tbody>
</table>

• PPP-adjusted per capita GDP in 2013 (in current international $): Korea: $33,140 vs Japan: $36,316

Source: Korea’s Industrial and Trade Policy: Historical Overview, KDI
Export-oriented Industrial Development

“Select and Focus” Strategy

1960s
- Light Industries
 - Import Protection
 - Foster export-oriented light industry

1970s
- Heavy Industries
 - Introduce new technology, expand technological capability

1980s
- Assembly & Processing Industries
 - Promote import liberalization
 - Expand investment in technological development, training of skilled manpower

1990s
- IT Industry
 - Strengthen demand-driven technological innovation
 - Establishment of nationwide IT infrastructure
Korean STI Strategy: Meeting Industrial Demands

Demand Side

- Self-Sustain Import-Subs.
- Mfg. Capacity Industrial Seeds
- Open Market
- Higher Value-added
- Industrial Diversification
- Industrial Convergence

Industry-Oriented STI Strategy

- Light Industries
- Heavy Industries
- Assembly & Processing Industries
- IT Industries
- New Growth Engines
- Creative Economy

Supply Side

- Import Protection Export-Orient
- Import Tech. Tech. Capability
- Expand R&D Skilled HR
- Demand-oriented Innovation
- Endogenous Tech.
- Creative R&D Capability
Paradigm Shift of Korean STI Policies

1962
1st 5-Year Economic Plan
Korea Institute of S&T (KIST)
Ministry of S&T (MOST)

1966
Korea Advanced Institute of Science (KAIS)

1967

1971

1981
Technology Development Promotion Act

1982
Industrial Generic Technology Development Program (IGTDP)

1987
National R&D Program (NRP)

1991
Information and Communication R&D Program (ICRP)

1992
Highly Advanced National Project (HAN)

1997
Financial Crisis

1997
Deputy Prime Minister of MOST (OSTI)

2004
MEST & MKE

2008
MSIP

2013

S&T Leadership

Institutional Building

Technology Catching-up
Trends of Total R&D Exp. and R&D/GDP in Korea

$ 59 Billion (4.15%) in 2013

Target 5%
Trends of Public vs. Private R&D Investment in Korea

Public R&D: Promoting Private R&D

Korea in Global R&D (2013)

Source: 2014 Global R&D Funding Forecast, Battelle (2013)
Major S&T Achievements

Science & Technology Articles

- 1981: 4 (53rd)
- 1997: 7,870 (18th)
- 2013: 51,051 (12th)

International Patents

- 1984: 10
- 1997: 30
- 2012: 1,891
- 2013: 11,848

Science & Technology Competitiveness (IMD)

- 2001: 21st
- 2002: 17th
- 2003: 24th
- 2004: 17th
- 2005: 13th
- 2006: 10th
- 2007: 7th
- 2008: 14th
- 2009: 14th
- 2014: 6th

- Science Competitiveness
- Technology Competitiveness
• Policy Coordination towards National Development
 • Economic Policy + Industrial Policy + STI Policy
 • STI Policies supported Economic & Industrial Dev. Strategies
 • Meeting Industrial Technological Demands
 • Facilitated and Encouraged Private R&D Investment & Innovation

• ‘Select and Focus’ Strategy (Strategic Selectivity)
 • Not an Option but a Must Strategy
 • Under the condition of scarce natural resources and limited financial resource
 • Selected and Focused on Decadal Strategic Industries
 • STI Policies focused on providing necessary industrial tech.

• Export-oriented Growth Strategy
 • Import-substitution Export-oriented Economic Development
 • Promoting Export in Strategic Industries
 • Need World-class Technological capacities
Characteristics of Korean Strategies II

- **Critical Mass (Economy of Scale)**
 - Critical Level (not sufficient) of Budget Secured
 - for any Initiative or Program
 - through Budget Process

- **Strategic Approach (Planning for Implementation)**
 - Comprehensive Plan for Long-term Vision
 - followed by Mid-term Plan,
 - Annual Action Plans with Budget Obligations, and
 - Monitoring and Evaluation on Implementation

- **Education!**
 - High Fever on Education (College Enrollment Rate = 72.5% in 2011)
 - Confucian Tradition: Scholars - Farmers - Manufacturers - Merchants
 - Could successfully provided necessary skilled HR, Technicians,
 High-Caliber S&Es for STI
Characteristics of Korean Strategies III

- **Leading Players (Champions)**
 - EPB (Min. of Economy) for National Development Strategy
 - MOST for STI Policies
 - GRIs for Technological Advancement
 - Chaebols for Private Sector

- **MOST (Ministry of Science and Technology)**
 - Established in front (1967) to build and orchestrate STI institutions, resources and players
 - Promoted to the level of Deputy Prime Minister Level later

- **GRIs (Government-sponsored Research Institutes)**
 - Semi-Public Entities: Not Civil Servants but Private Professionals
 - Away from bureaucracy towards Autonomous Operation
 - KIST (1966) and 26 Spin-offs

- **Policy Think-tanks and Managing Agencies**
 - For Professional Development and Implementation of Policies
 - Supporting Rational Policy Decisions & Enabling Strategic Approaches
Contents

- Korean STI Strategy for Industrial Development
- Diagnosis on Chilean Innovation System
- Policy Implications for Chile
Diagnosis on Chilean Innovation System I

- **Resource-driven Economy**
 - The Most Developed Economy in Latin America
 - The Only OECD Member in South America
 - Strong Free Market Economy & High level of Global Openness
 - But, Still a Resource-driven Economy

- **Relatively Strong Science Bases**
 - Few but Well-established Top Universities
 - CoEs in Universities Playing Major Role in Research
 - Strong Natural Sciences (esp., in Biology and Astronomy)
 - But, Weak linkages with Industrial Technological Demands

- **Limited Innovation Demands**
 - Various programs available to foster innovation in private sector
 - But, weak innovation capacity in private sector (R&D expenditure in private sector/GDP: 0.13%)
 - Limited demand for R&D and innovation (5.4% of univ.’s R&D funding is coming from private sector)
Coordination Failure due to Unclear Roles & Functions
- Well-designed diverse programs at CONICYT, CORFO and others
- But, they are similar and duplicated
- Coordination Failure among policies and programs

Lack of Critical Mass
- Rapid growth of R&D investments
- But, $1 B (0.39% GERD/GDP) on R&D still too small
- Lack of critical mass to achieve policy goals
- R&D project funding dispersed to reach many researchers in small scale

Lack of Strategic Approach
- No coherence in selecting the strategic sectors
- Horizontal Approach in allocating research funds => Failed in creating critical mass
• Weak Capacities at both the Individual and Institutional Levels
 • Researcher- or project-based support without continuity
 • Too many sliced funding sources for the similar goals
 • Failed in internalizing & institutionalizing R&D and Technology Transfer capacities

• Weak Regional Innovation Capacities
 • No clear governance system for regional innovation
 • Few regional STI resources are concentrated in a few regions (e.g., the Metropolitana, Biobio, and Balparaiso regions)
 • Weak coordination between central and regional STI policies
• Korean STI Strategy for Industrial Development
• Diagnosis on Chilean Innovation System
• Policy Implications for Chile
Policy Implications for Chile I

• Building STI Institutional Framework
 • Promoting Shared Vision
 • Need for Strategic Approach by setting goals, targets and actions for effective implementation
 • National Development Plan, Basic STI Plan, Action Plan, etc.

• ‘Select and Focus’ Strategy
 • Selecting strategic industries at the system level
 • Strategic and improved allocation of the Increased R&D investment to achieve critical mass

• Dramatic Expansion of R&D Investment
 • Critical mass is prerequisite for effective outcomes
 • Reaching 1% R&D intensity during this Administration
 • Reaching OECD avg. of R&D intensity by 2030
Policy Implications for Chile II

- **Industrial Policy for Demand-based Innovation**
 - For sustainable growth, strong basis of industries desirable
 - Industrial development creating strong technological demands for innovation
 - Comparative Advantage vs. Strategic Advantage
 - Diversification around existing industries + Creating New Strategic Industries

- **Promoting PRIs**
 - For Demand-oriented R&D (industrial R&D)
 - For Institutionalizing R&D Capacities
 - For Providing Quality Jobs for High-caliber S&Es
 - Achieving critical mass in larger scale

- **Strengthening Policy Capacities**
 - Establishment of STI Policy Think-tank
 - To support robust policy making (evidence-based policy making)
 - To institutionalize policy analysis capacities
Policy Implications for Chile III

- Developing Regional Innovation Parks
 - Regional Innovation Parks = Industrial Park + Techno Park
 - For Regional Innovation and Balanced Development
 - Also support policy planning relating to regional strategic industries
 - Towards Regional Inclusive Innovation

- Strengthening Public Policy Governance
 - Streamlining and Strengthening STI Policy Governance
 - Strengthening coordination among policies and programs
 - Clarifying roles & functions of each institution
Innovation Strategies at Different Development Stages

STI Leadership

Catching-Up

Institution Building
Thank You!

Muchas Gracias!